

Engrenagens Cilíndricas

da Concepção à Fabricação

Norberto Mazzo

Lançamento 2013

ISBN: 9788521207283

Páginas: 838

Formato: 17 x 24 cm

Peso: 1.333 kg

Este livro nasceu a partir da intenção de se fazer um curso sobre engrenagens. Um curso direcionado aos projetistas e engenheiros que desejam entender com mais profundidade os princípios básicos do engrenamento, as características geométricas, os elementos que formam o dente, as características do engrenamento, tolerâncias do dentado, controle dimensional, processos de fabricação e muito mais.

A pretensão deste trabalho está longe de ser um tratado teórico profundo; muito pelo contrário, esse texto apresenta um enfoque prático e resumido das necessidades que nós, profissionais da área, sentimos no dia a dia.

Embora os documentos normativos forneçam praticamente todas as fórmulas necessárias para um projeto completo, coloquei neste volume um formulário amplo, com o objetivo de reduzir a necessidade de se recorrer a outras literaturas durante um estudo ou um trabalho.

Normalmente, os projetistas e engenheiros, gostam de discutir um assunto técnico com uma caneta ou um lápis na mão. O esboço faz parte da nossa profissão. Portanto, acrescentei muitas figuras, todas desenhadas por mim, que ilustram os textos, muitas vezes, de difícil compreensão. Elas ajudam sobremaneira a entendê-los melhor.

Quanto a estrutura do livro, são 19 capítulos recheados de exemplos práticos, desde a concepção até a fabricação das engrenagens, além de um capítulo final, o Capítulo 20, que faz uma abordagem sobre análise de falhas.

www.blucher.com.br

Blucher

Norberto Mazzo

Engrenagens Cilíndricas

da concepção à fabricação

Blucher

Conteúdo

Pre	fácio	XXVII
nh	odução	XXIX
	Pré-requisitos	XXXI
1	Potência e torque	1
	Potência	
	Torque	4
2	Função da engrenagem	11
	Relação de transmissão	12
3	Involutometria do dente	17
	Evolvente	18
	Desenvolvimento da evolvente externa por meio da geometria	20
	Desenvolvimento da evolvente externa por meio de coordenadas	26
	Método numérico da bissecção ou dicotomia	27
	Algoritmo do método da bissecção	
	Traçado da curva evolvente	31

	Forjamento a quente	436
	Forjamento a frio	436
	Laminação	436
	Estampagem	436
	Tratamento térmico	436
	Aços para cementação	436
	Aços beneficiados	438
	Aços sem tratamento térmico	438
	Aços nitretados com líquido	438
	Aços nitretados com gás	438
	Aços tratados por indução	439
	Aços tratados por chama	440
	Resistência dos materiais	441
	Valores limites de resistência à flexão (σ _{Rim})	441
	Valores limites de resistência à pressão (σ _{Him})	445
16	Jateamento	449
	Shot peening	449
	Princípio básico do processo shot peening	450
	Conceito de intensidade de "peening"	451
	Processo e número de Almen	452
	Cobertura e saturação	453
	Especificação para o shot peening	454
	Operação	455
	Influência do shot peening no projeto de engrenagens	456
17	Lubrificação	459
	Considerações	459
	Lubrificação nas engrenagens	460
	Sistemas de lubrificação	462
	Composição de um sistema	462
	Seleção do sistema	462
	Aplicação do lubrificante	462
	Sistema de circulação	463
	Sistema de circulação por gravidade	463
	Sistema de circulação sob pressão própria	463
	Sistema central de circulação sob pressão	463
	Sistema de neblina de óleo	464
	Sistema de imersão	464
	Determinação do volume e da profundidade de imersão	465
	Sistema de lubrificação por depósito aberto	465
	Sistemas de aplicação intermitente de óleo e graxa	466
	Sistema manual de aplicação	467

Atrito entre os dentes da engrenagem. 467 Desgaste excessivo e falha dos dentes. 468 Partículas estranhas. 469 Corrosão 469 Temperatura. 470 18 Projeto de um por de engrenagens cilindricas externas 471 Considerações. 472 Capacidade de carga - Fundamentos. 472 Tensão de flexão (bending stress). 472 Tensão de contato (contact stress). 472 Estudo de um exemplo prático. 474 Especificações técnicas preliminares. 474 Aplicação e motorização. 475 Motorização. 475 Qualidade do dentado. 481 Coeficientes de segurança mínimos e máximos. 483 Coeficientes de segurança mínimos e máximos. 483 Coeficientes de segurança mínimos. 483 Coeficientes de velocidades. 485 Distância entre centros. 486 Diâmetro máximos permissíveis. 486 Arranjo físico. 487 Características geométricas básicas. 490 Angulo de helice. 492 Número de dentes. <th></th> <th>Função do lubrificante</th> <th>467</th>		Função do lubrificante	467
Desgaste excessivo e falha dos dentes		Atrito entre os dentes da engrenagem.	467
Partículas estranhas 469 Corrosão 469 Temperatura 470 18 Projeto de um por de engrenagens cilíndricas externas 471 Considerações 471 Capacidade de carga – Fundamentos 472 Tensão de flexão (bending stress) 472 Tensão de contato (contact stress) 472 Estudo de um exemplo prático 474 Estudo de um exemplo prático 474 Aplicação encotorização 475 Aplicação encotorização 475 Aplicação 475 Motorização 476 Qualidade do dentado 481 Coeficientes de segurança mínimos e máximos 483 Coeficientes de segurança mínimos e máximos 483 Coeficientes de segurança máximos 484 Características da transmissão 484 Relação de velocidades 485 Diância entre centros 486 Diâmetros máximos permissíveis 486 Aranjo físico 487 Características geométricas básicas 490			468
Temperatura 470 18 Projeto de um par de engrenagens cilíndricas externas 471 Considerações 471 Capacidade de carga – Fundamentos 472 Tensão de flexão (bending stress) 472 Tensão de contato (contact stress) 472 Estudo de um exemplo prático 474 Especificações técnicas preliminares 474 Aplicação e motorização 475 Motorização 475 Motorização 476 Qualidade do dentado 481 Coeficientes de segurança mínimos e máximos 483 Coeficientes de segurança mínimos e máximos 483 Coeficientes de segurança máximos 484 Características da transmissão 484 Relação de velocidades 485 Distância entre centros 486 Diámetros máximos permissíveis 486 Arranjo físico 487 Características geométricas básicas 490 Ângulo de perfil 491 Módulo normal 491 Ángulo de hélice 492 Núme		Partículas estranhas	469
18 Projeto de um par de engrenagens cilíndricas externas 471 Considerações 471 Capacidade de carga – Fundamentos 472 Tensão de flexão (bending stress) 472 Tensão de contato (contact stress) 472 Estudo de um exemplo prático 474 Especificações técnicas preliminares 474 Aplicação e motorização 475 Aplicação 475 Motorização 476 Qualidade do dentado 481 Coeficientes de segurança mínimos e máximos 483 Coeficientes de segurança máximos 483 Coeficientes de segurança máximos 484 Características da transmissão 484 Relação de velocidades 485 Distância entre centros 486 Diâmetros máximos permissíveis 486 Arranjo físico 487 Características geométricas básicas 490 Ângulo de perfil 491 Módulo normal 491 Ângulo de hélice 492 Fator de deslocamento dos perfis 493		Corrosão	469
Considerações 471 Capacidade de carga – Fundamentos 472 Tensão de flexão (bending stress) 472 Tensão de contato (contact stress) 472 Estudo de um exemplo prático 474 Especificações técnicas preliminares 474 Aplicação e motorização 475 Aplicação o e motorização 475 Motorização 476 Qualidade do dentado 481 Coeficientes de segurança mínimos e máximos 483 Coeficientes de segurança mínimos e máximos 483 Coeficientes de segurança mínimos 484 Características da transmissão 484 Relação de velocidades 485 Disância entre centros 486 Diâmetros máximos permissíveis 486 Arranjo físico 487 Características geométricas básicas 490 Ângulo de perfil 491 Módulo normal 491 Ángulo de hélice 492 Número de dentes 492 Fator de deslocamento dos perfis 493 Características geométricas complementares 496 D		Temperatura	470
Capacidade de carga – Fundamentos 472 Tensão de flexão (bending stress) 472 Tensão de contato (contact stress) 472 Estudo de um exemplo prático 474 Especificações técnicas preliminares 474 Aplicação e motorização 475 Aplicação 475 Motorização 476 Qualidade do dentado 481 Coeficientes de segurança mínimos e máximos 483 Coeficientes de segurança mínimos 483 Coeficientes de segurança máximos 484 Características da transmissão 484 Relação de velocidades 485 Distância entre centros 486 Diâmetros máximos permissíveis 486 Arranjo físico 487 Características geométricas básicas 490 Ângulo de hélice 492 Número de dentes 492 Fator de deslocamento dos perfis 493 Características geométricas complementares 496 Diâmetro de cabeça 496 Diâmetro de início do chanfro 499 Diâmetro de início do chanfro 499	18	Projeto de um par de engrenagens cilíndricas externas	471
Tensão de flexão (bending stress) 472 Tensão de contato (contact stress) 472 Estudo de um exemplo prático 474 Especificações técnicas preliminares 474 Aplicação e motorização 475 Aplicação 476 Motorização 476 Qualidade do dentado 481 Coeficientes de segurança mínimos e máximos 483 Coeficientes de segurança mínimos 483 Coeficientes de segurança máximos 484 Características da transmissão 484 Relação de velocidades 485 Distância entre centros 486 Diâmetros máximos permissíveis 486 Arranjo físico 487 Características geométricas básicas 490 Ângulo de perfil 491 Módulo normal 491 Ângulo de hélice 492 Número de dentes 492 Fator de deslocamento dos perfis 493 Características geométricas complementares 496 Diâmetro de início do chanfro 499 Diâmetro útil de pé d_{Nf} 504 Grau de recobri		Considerações	471
Tensão de contato (contact stress). 472 Estudo de um exemplo prático. 474 Especificações técnicas preliminares 474 Aplicação e motorização. 475 Aplicação 476 Qualidade do dentado. 481 Coeficientes de segurança mínimos e máximos 483 Coeficientes de segurança mínimos 483 Coeficientes de segurança máximos 484 Características da transmissão 484 Relação de velocidades 485 Distância entre centros. 486 Diâmetros máximos permissíveis 486 Arranjo físico. 487 Características geométricas básicas 490 Ângulo de perfil. 491 Módulo normal. 491 Ângulo de hélice. 492 Número de dentes. 492 Fator de deslocamento dos perfis 493 Características geométricas complementares 496 Diâmetro de início do chanfro. 499 Diâmetro útil de pé d_{Nf} 504 Diâmetro útil de cabeça 496 Diâmetro útil de cabeça 504 Gr		Capacidade de carga – Fundamentos	472
Estudo de um exemplo prático474Especificações técnicas preliminares474Aplicação e motorização475Aplicação475Motorização476Qualidade do dentado481Coeficientes de segurança mínimos e máximos483Coeficientes de segurança mínimos483Coeficientes de segurança máximos484Características da transmissão484Relação de velocidades485Distância entre centros486Diâmetros máximos permissíveis486Arranjo físico487Características geométricas básicas490Ângulo de perfil491Módulo normal491Ângulo de hélice492Número de dentes492Fator de deslocamento dos perfis493Características geométricas complementares496Diâmetro de cabeça496Diâmetro de início do chanfro499Diâmetro útil de pé d_{Nf} 504Diâmetro útil de cabeça d_{Na} 504Grau de recobrimento de perfil505Grau de recobrimento de hélice506		Tensão de flexão (bending stress)	472
Especificações técnicas preliminares 474 Aplicação e motorização 475 Aplicação 476 Motorização 476 Qualidade do dentado 481 Coeficientes de segurança mínimos e máximos 483 Coeficientes de segurança mínimos 483 Coeficientes de segurança máximos 484 Características da transmissão 484 Relação de velocidades 485 Distância entre centros 486 Diâmetros máximos permissíveis 486 Arranjo físico 487 Características geométricas básicas 490 Ângulo de perfil 491 Módulo normal 491 Ángulo de hélice 492 Número de dentes 492 Fator de deslocamento dos perfis 493 Características geométricas complementares 496 Diâmetro de cabeça 496 Diâmetro de início do chanfro 499 Diâmetro útil de pé d_{N_f} 504 Diâmetro útil de cabeça $d_{N_{ab}}$ 504 Grau de recobrimento de perfil 505 Grau de recobrimento de hélice 506		Tensão de contato (contact stress)	472
Aplicação e motorização 475 Aplicação 475 Motorização 476 Qualidade do dentado 481 Coeficientes de segurança mínimos e máximos 483 Coeficientes de segurança mínimos 483 Coeficientes de segurança máximos 484 Características da transmissão 484 Relação de velocidades 485 Distância entre centros 486 Diâmetros máximos permissíveis 486 Arranjo físico 487 Características geométricas básicas 490 Ângulo de perfil 491 Módulo normal 491 Ángulo de hélice 492 Número de dentes 492 Fator de deslocamento dos perfis 493 Características geométricas complementares 496 Diâmetro de início do chanfro 499 Diâmetro útil de pé d_{Nf} 504 Diâmetro útil de cabeça d_{Na} 504 Grau de recobrimento de perfil 505 Grau de recobrimento de hélice 506		Estudo de um exemplo prático	474
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Especificações técnicas preliminares	474
Motorização 476 Qualidade do dentado 481 Coeficientes de segurança mínimos e máximos 483 Coeficientes de segurança mínimos 483 Coeficientes de segurança máximos 484 Características da transmissão 484 Relação de velocidades 485 Distância entre centros 486 Diâmetros máximos permissíveis 486 Arranjo físico 487 Características geométricas básicas 490 Ângulo de perfil 491 Módulo normal 491 Ângulo de hélice 492 Número de dentes 492 Fator de deslocamento dos perfis 493 Características geométricas complementares 496 Diâmetro de cabeça 496 Diâmetro de início do chanfro 499 Diâmetro útil de pé d_{Nf} 504 Diâmetro útil de cabeça d_{Na} 504 Grau de recobrimento de perfil 505 Grau de recobrimento de hélice 506		Aplicação e motorização	475
Qualidade do dentado481Coeficientes de segurança mínimos483Coeficientes de segurança mínimos483Coeficientes de segurança máximos484Características da transmissão484Relação de velocidades485Distância entre centros486Diâmetros máximos permissíveis486Arranjo físico487Características geométricas básicas490Ângulo de perfil491Módulo normal491Ângulo de hélice492Número de dentes492Fator de deslocamento dos perfis493Características geométricas complementares496Diâmetro de início do chanfro499Diâmetro útil de pé d_{Nf} 504Diâmetro útil de cabeça d_{Na} 504Grau de recobrimento de perfil505Grau de recobrimento de hélice506		Aplicação	475
Coeficientes de segurança mínimos483Coeficientes de segurança mínimos483Coeficientes de segurança máximos484Características da transmissão484Relação de velocidades485Distância entre centros486Diâmetros máximos permissíveis486Arranjo físico487Características geométricas básicas490Ângulo de perfil491Módulo normal491Ângulo de hélice492Número de dentes492Fator de deslocamento dos perfis493Características geométricas complementares496Diâmetro de início do chanfro499Diâmetro útil de pé d_{Nf} 504Diâmetro útil de cabeça d_{Na} 504Grau de recobrimento de perfil505Grau de recobrimento de hélice506		Motorização	476
Coeficientes de segurança mínimos483Coeficientes de segurança mínimos483Coeficientes de segurança máximos484Características da transmissão484Relação de velocidades485Distância entre centros486Diâmetros máximos permissíveis486Arranjo físico487Características geométricas básicas490Ângulo de perfil491Módulo normal491Ângulo de hélice492Número de dentes492Fator de deslocamento dos perfis493Características geométricas complementares496Diâmetro de início do chanfro499Diâmetro útil de pé d_{Nf} 504Diâmetro útil de cabeça d_{Na} 504Grau de recobrimento de perfil505Grau de recobrimento de hélice506		Qualidade do dentado	481
Coeficientes de segurança mínimos483Coeficientes de segurança máximos484Características da transmissão484Relação de velocidades485Distância entre centros486Diâmetros máximos permissíveis486Arranjo físico487Características geométricas básicas490Ângulo de perfil491Módulo normal491Ângulo de hélice492Número de dentes492Fator de deslocamento dos perfis493Características geométricas complementares496Diâmetro de início do chanfro499Diâmetro útil de pé d_{Nf} 504Diâmetro útil de cabeça d_{Na} 504Grau de recobrimento de perfil505Grau de recobrimento de hélice506			483
Coeficientes de segurança máximos484Características da transmissão484Relação de velocidades485Distância entre centros486Diâmetros máximos permissíveis486Arranjo físico487Características geométricas básicas490Ângulo de perfil491Módulo normal491Ângulo de hélice492Número de dentes492Fator de deslocamento dos perfis493Características geométricas complementares496Diâmetro de início do chanfro499Diâmetro útil de pé d_{Nf} 504Diâmetro útil de cabeça d_{Na} 504Grau de recobrimento de perfil505Grau de recobrimento de hélice506			483
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			484
Distância entre centros. 486 Diâmetros máximos permissíveis 486 Arranjo físico. 487 Características geométricas básicas 490 Ângulo de perfil. 491 Módulo normal. 491 Ângulo de hélice. 492 Número de dentes. 492 Fator de deslocamento dos perfis 493 Características geométricas complementares 496 Diâmetro de cabeça 496 Diâmetro de início do chanfro. 499 Diâmetro útil de pé d_{Nf} 504 Diâmetro útil de cabeça d_{Na} 504 Grau de recobrimento de perfil. 505 Grau de recobrimento de hélice 506			484
Distância entre centros.486Diâmetros máximos permissíveis486Arranjo físico.487Características geométricas básicas490Ângulo de perfil.491Módulo normal.491Ângulo de hélice.492Número de dentes.492Fator de deslocamento dos perfis493Características geométricas complementares496Diâmetro de cabeça496Diâmetro de início do chanfro.499Diâmetro útil de pé d_{Nf} 504Diâmetro útil de cabeça d_{Na} 504Grau de recobrimento de perfil.505Grau de recobrimento de hélice506		Relação de velocidades	485
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			486
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Diâmetros máximos permissíveis	486
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			487
			490
Módulo normal.491Ângulo de hélice.492Número de dentes.492Fator de deslocamento dos perfis.493Características geométricas complementares.496Diâmetro de cabeça.496Diâmetro de início do chanfro.499Diâmetro útil de pé d_{Nf} .504Diâmetro útil de cabeça d_{Na} .504Grau de recobrimento de perfil.505Grau de recobrimento de hélice506		그 사람들이 없는 사람들이 집에 가장 나는 사람들이 가장 하는 사람들이 가장 하는 것이 되었다면 하는 것이 없는 것이 없는데 그렇게 되었다면 하는데 그렇게 되었다면 그 없는데 그렇게 되었다.	491
			491
Número de dentes		Ângulo de hélice	492
Fator de deslocamento dos perfis493Características geométricas complementares496Diâmetro de cabeça496Diâmetro de início do chanfro499Diâmetro útil de pé d_{Nf} 504Diâmetro útil de cabeça d_{Na} 504Grau de recobrimento de perfil505Grau de recobrimento de hélice506		273	492
Características geométricas complementares 496 Diâmetro de cabeça 496 Diâmetro de início do chanfro 499 Diâmetro útil de pé d_{Nf} 504 Diâmetro útil de cabeça d_{Na} 504 Grau de recobrimento de perfil 505 Grau de recobrimento de hélice 506			493
$\begin{array}{lll} \text{Diâmetro de cabeça}& 496 \\ \text{Diâmetro de início do chanfro}.& 499 \\ \text{Diâmetro útil de pé } d_{\text{Nf}}& 504 \\ \text{Diâmetro útil de cabeça } d_{\text{Na}}& 504 \\ \text{Grau de recobrimento de perfil}.& 505 \\ \text{Grau de recobrimento de hélice}.& 506 \\ \end{array}$			496
Diâmetro de início do chanfro.499Diâmetro útil de pé d_{Nf} .504Diâmetro útil de cabeça d_{Na} .504Grau de recobrimento de perfil.505Grau de recobrimento de hélice506			496
$\begin{array}{lll} \text{Diâmetro útil de pé d_{Nf}} & & 504 \\ \text{Diâmetro útil de cabeça d_{Na}} & & 504 \\ \text{Grau de recobrimento de perfil.} & & 505 \\ \text{Grau de recobrimento de hélice} & & 506 \\ \end{array}$		Diâmetro de início do chanfro	
$\begin{array}{lll} \text{Diâmetro útil de cabeça } d_{\text{No}} & 504 \\ \text{Grau de recobrimento de perfil.} & 505 \\ \text{Grau de recobrimento de hélice} & 506 \\ \end{array}$			504
Grau de recobrimento de perfil			504
Grau de recobrimento de hélice			
W 1999 1111 111 111 111 111 111 111 111			
Diâmetro de pé			
Folga no pé dos dentes		[사용: 15 12 14 44 15 14 44 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	

Raio da crista da ferramenta	508
Protuberância da ferramenta	509
Extensão de contato e larguras efetivas	509
Diâmetro do eixo da roda motora	519
Diâmetro interno do aro e espessura da alma	521
Características de ajuste	522
Espessura circular normal do dente	522
Dimensão W sobre k dentes consecutivos	528
Dimensão M sobre rolos ou esferas	530
Características funcionais	535
Temperaturas	535
Regime de trabalho	535
Vida útil nominal requerida (V,)	538
Peso do par	539
Materiais e tratamento térmico	540
Material para as engrenagens	540
Material para a caixa	541
Tratamento térmico das engrenagens	541
Características metalúrgicas das engrenagens	542
Lubrificação das engrenagens	
Rumorosidade	543
Custo	543
Esforços atuantes no par engrenado	545
Velocidades do deslizamento entre os flancos conjugados	547
Fatores de influência	548
Fator de dinâmica (K _v)	549
Definição de ressonância	550
Coeficiente de ressonância (N)	550
Determinação da rotação de ressonância de um par de engrenagens	551
Determinação da rotação de ressonância de um conjunto epicicloidal	563
Fator de distribuição longitudinal de carga (K_{HB}) (Tensão de contato)	569
Princípios gerais para a determinação de K _{HB}	569
Erro devido à deformação do pinhão e do seu eixo, sem modificação da hélice (fas) 571
Deformação do eixo sob carga específica	571
Erro de fabricação sem modificação da hélice (fma)	572
Desalinhamento equivalente inicial $(F_{\beta x})$	573
Redução de rodagem (y_g) e fator de rodagem (x_g)	
Desalinhamento equivalente efetivo (FBy)	
Determinação de K _{H3}	
Fator de distribuição longitudinal de carga $(K_{_{\it FB}})$ (Tensão na raiz)	
Determinação de $K_{_{\mathrm{PB}}}$	
Fator de distribuição transversal de carga (K _H ,) (Tensão de contato)	

Determinação de $K_{H\alpha}$	582
Fator de distribuição transversal de carga $(K_{F\alpha})$ (Tensão de raiz)	583
Determinação de $(K_{\mathbf{p}_{\infty}})$	584
Fator de zona (Z _H)	584
Fator de elasticidade (Z _r)	585
Fator de recobrimento (Z,)	585
Fator de ângulo de hélice (Z _B)	586
Fator de lubrificante (Z_I)	586
Fator de velocidade (Z _ν)	588
Fator de rugosidade (Z_R)	589
Fator de dureza de trabalho (Z_w)	591
Fator de tamanho (Z_x)	592
Fator de engrenamento individual – pinhão $(Z_{\mathfrak{g}})$	593
Fator de engrenamento individual – coroa (Z_D)	594
Fator de vida útil (Z_{NT} e Z_{GT})	595
Fator de forma do dente (Yp)	599
Fator de correção da tensão (Y _s)	606
Fator de recobrimento (Y _z)	608
Fator de ângulo de hélice (Y,)	608
Fator de sensibilidade relativa (Y _{5 rel T})	609
Fator de condição superficial relativa de raiz $(Y_{R \text{ rel }T})$	614
Fator de tamanho do dente (Y _x)	617
Fator de vida útil (Y _{NT})	619
Tensão de contato (contact stress)	622
Tensão efetiva de contato (σ_{H})	622
Tensão admissível de contato $(\sigma_{HP} e \sigma_{GP})$	626
Tensão admissível de contato sem pites (σ _{HP})	626
Tensão admissível de contato com pites (σ_{GP})	627
Coeficiente de segurança à pressão $(S_H \in S_G)$	628
Coeficiente de segurança à pressão sem pites (S_H)	628
Coeficiente de segurança à pressão com pites (S_G)	628
Vida útil nominal à pressão	629
Número de ciclos de vida médio (N_{LE}) em função de Z_N	630
Vida útil nominal (em horas) à pressão sem pites (V_{H})	632
Vida útil nominal (em horas) à pressão com pites (V_G)	632
Tensão de flexão (bending stress)	633
Tensão fletora efetiva no pé do dente (σ _F)	634
Tensão fletora admissível (σ _{pp})	635
Coeficiente de segurança à flexão $(S_{\mathfrak{p}})$	636
Vida útil nominal à flexão	636
Número de ciclos de vida médio (N_{LE}) em função de Y_N	637
Vida útil nominal (em horas) à flexão (V_p)	639

	Capacidade de carga	640
	Capacidade máxima de regime da roda motora (P1)	640
	Capacidade máxima de regime da roda movida (P2)	640
	Capacidade admissível da roda motora à pressão sem pites (P _{HP1})	642
	Capacidade admissível da roda movida à pressão sem pites (P_{HP2})	643
	Capacidade admissível da roda motora à pressão com pites (P_{GP1})	643
	Capacidade admissível da roda movida à pressão com pites (P _{GP2})	644
	Capacidade admissível da roda motora à flexão (P _{FP1})	645
	Capacidade admissível da roda movida à flexão (P_{pp_2})	646
	Torque máximo de regime para roda motora (T1)	647
	Torque máximo de regime para roda movida (T2)	648
	Torque máximo admissível à pressão para roda motora sem pites (T_{HP1})	648
	Torque máximo admissível à pressão para roda movida sem pites (T_{HP2})	648
	Torque máximo admissível à pressão para roda motora com pites (T_{GP1})	649
	Torque máximo admissível à pressão para roda movida com pites (T_{GP})	649
	Torque máximo admissível à flexão para roda motora (T_{pp})	649
	Torque máximo admissível à flexão para roda movida (T_{pp2})	649
	Relatório completo do par de engrenagens cilíndricas externas	650
19	Capacidade de carga de um par de engrenagens com	
1	dentes externo/interno	665
	Considerações	665
	Fundamentos	665
	Estudo de um exemplo prático	666
	Especificações técnicas preliminares	666
	Aplicação e motorização	667
	Aplicação	667
	Motorização	667
	Qualidade do dentado	667
	Coeficientes de segurança mínimos e máximos	668
	Coeficientes de segurança mínimos	668
	Coeficientes de segurança máximos	668
	Características da transmissão	668
	Relação de velocidades	668
	Distância entre centros	668
	Diâmetros máximos permissíveis	669
	Arranjo físico	669
	Características geométricas básicas	669
	Ângulo de perfil	669
	Módulo normal	669
	Ângulo de hélice	670
	Número de dentes	
		670
	Fator de deslocamento dos perfis	670

	Características geométricas complementares	670
	Diâmetro de cabeça	671
	Ângulo do chanfro	671
	Diâmetro de início do chanfro do pinhão (d _{Nk1})	671
	Diâmetro útil de pé $(d_{\mathbf{N}})$	672
	Diâmetro útil de cabeça (d_{M_0})	672
	Grau de recobrimento de perfil	673
	Grau de recobrimento de hélice	674
	Grau de recobrimento total	674
	Diâmetro de pé	674
	Folga no pé dos dentes	674
	Raio da crista da ferramenta	675
	Protuberância do hob	675
	Extensão de contato e larguras efetivas	675
	Diâmetro do eixo da roda motora	675
	Diâmetro interno do aro	676
	Características de ajuste	676
	Espessura circular do dente e dimensão circular do vão	676
	Características funcionais	682
	Temperaturas	682
	Regime de trabalho	683
	Vida útil nominal requerida $(V_{\rm g})$	683
	Peso do par	683
	Materiais	683
	Material para as engrenagens	683
	Material para a caixa	684
	Tratamento térmico das engrenagens	684
	Características metalúrgicas das engrenagens	684
	Lubrificação das engrenagens	684
	Rumorosidade	685
E	sforços atuantes no par engrenado	685
V	elocidades do deslizamento entre os flancos conjugados	686
F	atores de influência	687
	Fator de dinâmica (K_v)	687
	Definição de ressonância	687
	Coeficiente de ressonância (N)	687
	Fator de distribuição longitudinal de carga $(K_{H\!B})$	692
	Fator de distribuição longitudinal da carga (K_{pB})	695
	Fator de distribuição transversal da carga (K _{Hα})	695
	Fator de distribuição transversal da carga $(K_{F\alpha})$	696
	Fator de zona (Z_H)	696
	Fator de elasticidade $(Z_{\mathbf{g}})$	696

	Fator de recobrimento $(Z_{\mathfrak{c}})$	697
	Fator de ângulo de hélice $(Z_{\mathfrak{g}})$	697
	Fator de lubrificante (Z_L)	697
	Fator de velocidade (Z _v)	698
	Fator de rugosidade (Z _R)	699
	Fator de dureza de trabalho (Z_w)	699
	Fator de tamanho (Z_X)	700
	Fator de engrenamento individual – pinhão (Z _g)	700
	Fator de engrenamento individual – coroa (Z_D)	701
	Fator de vida útil $(Z_{NT} e Z_{GT})$	701
	Fator de forma do dente (Y _F)	702
	Fator de correção de tensão (Y _s)	706
	Fator de recobrimento (Y,)	707
	Fator de ângulo de hélice (Y ₈)	707
	Fator de sensibilidade relativa (Y _{5 rel T})	708
	Fator de condição superficial relativa da raiz (Y _{R rel T})	710
	Fator de tamanho do dente (Y _x)	710
	Fator de vida útil (Y _{NT})	711
7	Pensão de contato (contact stress)	711
	Tensão efetiva de contato (σ_{H})	712
	Tensão admissível de contato (σ _{HP})	712
	Coeficiente de segurança a pressão $(S_H \in S_G)$	713
	Vida útil nominal a pressão	714
7	ensão de flexão (Bending Stress)	715
	Tensão fletora efetiva no pé do dente (σ_p)	715
	Tensão fletora admissível (σ_{pp})	716
	Coeficiente de segurança a flexão (S _r)	716
	Vida útil nominal a flexão	716
(Capacidade de carga	719
	Capacidade máxima de regime da roda motora (P1)	719
	Capacidade máxima de regime da roda movida (P2)	719
	Capacidade admissível da roda motora a pressão sem pites (P _{HP1})	720
	Capacidade admissível da roda movida a pressão sem pites $(P_{H\!P\!2})$	720
	Capacidade admissível da roda motora a pressão com pites (P_{GP1})	721
	Capacidade admissível da roda movida a pressão com pites (P_{GP2})	721
	Capacidade admissível da roda motora à flexão (P _{FP1})	722
	Capacidade admissível da roda movida à flexão (P _{pp2})	722
	Torque máximo de regime para roda motora (T_1)	723
	Torque máximo de regime para roda movida (T_2)	723
	Torque máximo admissível a pressão para roda motora sem pites (T_{HP1})	724
	Torque máximo admissível a pressão para roda movida sem pites (T_{HP2})	724
	Torque máximo admissível a pressão para roda motora com pites (T_{GPI})	724
	Gri	

	Torque máximo admissível a pressão para roda movida com pites (T_{GP})	724
	Torque máximo admissível a flexão para roda motora (T _{pp1})	725
	Torque máximo admissível a flexão para roda movida (T _{FP2})	725
	Relatório da capacidade de carga do par de engrenagens com dentes externos/internos	725
20	Avarias dos dentes	737
	Considerações	737
	Avarias	739
	Desgaste	740
	Desgaste normal	740
	Desgaste moderado	741
	Desgaste abrasivo	741
	Desgaste por interferência	742
	Desgaste por arranhamento (scratching)	742
	Desgaste por vinco (scoring)	743
	Desgaste por raspagem (scuffing)	744
	Desgaste corrosivo	744
	Desgaste por corrosão química	745
	Desgaste por oxidação	745
	Desgaste por reação a aditivos químicos	745
	Escamação (scaling)	745
	Superaquecimento	746
	Fadiga de superfície	747
	Pites (pitting)	748
	Pites iniciais (initial pitting)	749
	Pites destrutivos (destructive pitting)	751
	Micropites (micropitting)	752
	Lascamento (spalling)	754
	Deformação	756
	Depressão (indentation)	756
	Ondulação (rippling)	758
	Fluência (rolling and peening)	758
	Fratura do dente	758
	Fratura por sobrecarga	759
	Fratura por fadiga de flexão	760
Índia	e de ilustrações	763
Note	ıção utilizada neste livro	777
Bibli	ografia	793
Índia	e remissivo.	797

Cálculo do raio no qual inicia a evolvente de um dente externo (r_u)	32
Perfil sem depressão	32
Perfil com depressão	34
Determinação do início da evolvente (du) sem depressão cortado com hob	38
Determinação do início da evolvente (d,) sem depressão cortado com shaper	39
Determinação do início da evolvente (d,) com depressão cortado com hob	39
Determinação do início da evolvente (du) com depressão cortado com shaper	42
Traçado da evolvente de um dente externo cortado com hob com depressão	45
Desenvolvimento da evolvente interna por meio de coordenadas	46
Cálculo do raio no qual termina a evolvente de um dente interno (r_u)	46
Determinação do início da evolvente (du) para um dente interno	48
Traçado da evolvente de um dente interno	49
Deslizamento relativo entre os flancos evolventes	51
Cremalheira	55
Princípios básicos da engrenagem com perfil evolvente	56
Leis fundamentais da curva evolvente	59
Trocoide	60
Desenvolvimento da trocoide primitiva e do filete trocoidal	62
Traçado do filete trocoidal externo	66
Preparação para o traçado da trocoide externa	68
Determinação dos raios (eixos polares) para o traçado da trocoide externa	68
Traçado da trocoide externa	69
Traçado do filete trocoidal interno	72
Preparação para o traçado da trocoide interna	76
Cálculo de um ponto qualquer do filete trocoidal	76
Determinação dos raios (eixos polares) para o traçado da trocoide interna	78
Traçado da trocoide interna	78
Raio no lugar do filete trocoidal	79
Determinação do raio que tangencia o círculo de cabeça e as evolventes	81
Método de Newton e Raphson para determinar a sevoluta do ângulo	82
Determinação do raio que tangencia o círculo de pé e as evolventes	83
Determinação do raio de cabeça r_{a} em função do filete da cabeça r_{ka}	84
Determinação do raio de pé $r_{\!_f}$ em função do filete do pé $r_{\!_{kf}}$	84
Exemplo da determinação do raio que tangencia o círculo de cabeça e as evolventes	85
Exemplo da determinação do raio que tangencia o círculo de pé e as evolventes	86
Exemplo da determinação do raio de cabeça em função do filete da cabeça	87
Exemplo da determinação do raio de pé em função do filete do pé	87
Chanfro de cabeça	88
Espessura de cabeça sem o chanfro (S _{na})	90
Ângulo do chanfro na seção normal (φ _{ma})	90
Ângulo do chanfro na seção transversal (φ _{ts})	90
Comprimento do chanfro (C _g)	90

	Diâmetro de início do chanfro (d _{Nk})	91
	Espessura da cabeça do dente com chanfro na seção normal (S_{nk})	92
	Raio de pé	93
	Determinação do diâmetro de pé	95
	Tolerância para o diâmetro de pé	96
	Raio de cabeça	96
	Determinação do raio de cabeça	97
	Fator de altura do dente	98
	Diâmetro de cabeça em função da espessura de cabeça	99
	Determinação do diâmetro de cabeça em função de S_{ma} para dentado externo	99
	Determinação do diâmetro de cabeça em função de S_{na} para dentado interno	100
	Tolerância para o diâmetro de cabeça	101
	Exemplo para determinação do diâmetro de cabeça em função da espessura	
	de cabeça para dentes externos	101
	Exemplo para determinação do diâmetro de cabeça em função da espessura	
	de cabeça para dentes internos	102
	Percentual da altura máxima do dente (k_{aPer}) para dentes externos	103
	Os cinco elementos do dente	104
	Geração do dente completo	105
4	Tipos de engrenamento	107
	Engrenagens cilíndricas com eixos paralelos que giram em sentidos opostos	107
	Engrenagens cilíndricas com eixos paralelos que giram no mesmo sentido	107
	Engrenagens concorrentes	108
	Engrenagens hiperboloides	108
	Engrenagens para corrente e/ou correia dentada	108
	Sem fim e coroa	109
	Pinhão e cremalheira	109
	Redutor epicicloidal ou planetário	109
	Relações de transmissão (u) de um sistema epicicloidal (planetário)	110
5	Definições.	113
	Engrenagem ou roda dentada?	113
	Direção da hélice	114
	Planos de trabalho	114
	Posições dos flancos em rodas com dentes externos	116
	Posições dos flancos em rodas com dentes internos	116
	Evoluta da curva	117
	Involuta ou evolvente do ângulo	117
	Definição da involuta do ângulo	117

6	Uso prático da involuta do ângulo	121
	Graus sexagesimais, decimais e radianos	121
	Graus sexagesimais	121
	Graus decimais	122
	Radianos	122
	Aplicação da involuta no cálculo da espessura de cabeça	123
	Método numérico de Newton e Raphson	123
	Aplicação da involuta no cálculo da dimensão M	127
7	Características geométricas.	131
	Distância entre centros	131
	Tolerância para distância entre centros	132
	Número de dentes	134
	Determinação dos números de dentes	135
	Exemplo para a determinação dos números de dentes externos	137
	Número de dentes virtual	144
	Módulo	144
	Ângulo de perfil	146
	Diâmetro de referência (d)	150
	Diâmetro de referência deslocado (d _u)	151
	Diâmetro primitivo (d _w)	151
	Ângulo de hélice	153
	Ângulo de hélice sobre o círculo de referência	154
	Ângulo de hélice sobre um círculo qualquer	154
	Ângulo de hélice sobre o círculo de referência deslocado	155
	Ângulo de hélice sobre o círculo base	155
	Ângulo de hélice em função da velocidade angular	155
	Ângulo de hélice normalizado	156
	Por que engrenagens helicoidais?	167
	Passo	167
	Passo circular	167
	Passo circular normal	167
	Passo circular transversal	168
	Passo circular transversal primitivo	168
	Passo axial	168
	Passo base	169
	Passo base normal	169
	Passo base axial.	170
	Deslocamento do perfil	170
	Determinação dos fatores de deslocamento dos perfis conforme a norma DIN	173
	Determinação dos fatores de deslocamento dos perfis conforme a norma BS	175
	Determinação dos fatores de deslocamento dos perfis conforme a norma ISO/TR	176

	Fator de deslocamento do perfil mínimo (x_{min})	177
	Exemplo do método conforme a norma DIN 3992	178
	Exemplo do método conforme a norma British Standards PD 6457	179
	Exemplo do método conforme a norma ISO/TR 4467	180
	Fator de deslocamento do perfil de produção (X_p)	180
	Fator de deslocamento do perfil em função da distância entre centros e de x,	181
	Fatores de deslocamento do perfil (x, e x,) em função das espessuras do	
	dentes de ambas as rodas	181
	Exemplo para o fator de deslocamento do perfil mínimo (x_{min})	182
	Deslocamento do perfil para dentado interno	182
	Limites para a soma dos fatores de deslocamentos dos perfis	184
	Determinação do limite mínimo de (x1+x2)	185
	Determinação do limite máximo de (x_1+x_2)	185
8	Ajuste das engrenagens	187
	Jogo entre flancos	187
	Jogo entre flancos de serviço	189
	Jogo estabilizado inferior e superior	189
	Jogo mínimo e máximo atingidos	190
	Jogo entre flancos de inspeção	190
	Jogo de inspeção na própria máquina – inferior e superior	190
	Jogo de inspeção em dispositivo – inferior e superior	190
	Jogo teórico inferior e superior	190
	Análise dos fatores modificadores do jogo entre flancos transversal	190
	Variação do jogo devida à tolerância da distância entre centros (VT_{Ad})	191
	Variação do jogo devida ao cruzamento dos eixos (VT_{G_e})	191
	Variação do jogo devida aos erros individuais do dentado (VT_{Ei})	192
	Variação do jogo devida ao erro de excentricidade dos mancais $(VT_{\underline{\nu}x})$	192
	Variação do jogo devida à elasticidade do conjunto (VT2)	193
	Variação do jogo devida ao aquecimento ($VT_{A\mathbf{q}}$)	194
	Cálculo do jogo entre flancos transversal	195
	Jogo entre flancos teórico (jn ₁)	195
	Jogo entre flancos com a influência da tolerância da distância entre centros (jn_2)	196
	Jogo entre flancos com a influência do erro de cruzamento dos eixos (jn_3)	196
	Jogo entre flancos com a influência dos erros individuais do dentado (jn_4)	197
	Jogo entre flancos com a influência da excentricidade dos mancais (jn_5)	197
	Jogo entre flancos com a influência da elasticidade do conjunto (jn_6)	198
	Jogo entre flancos com a influência da temperatura (jn_7)	199
	Espessura do dente	199
	Afastamento sobre a espessura do dente ou sobre a dimensão do vão	201
	Tolerância para a espessura do dente ou para a dimensão do vão	202
	Espessura do dente e dimensão do vão teórica, máxima e mínima	203

	Determinação da espessura circular normal do dente	204	
	Espessura circular do dente em função da dimensão W	204	
	Espessura circular do dente em função da dimensão M	205	
	Espessura circular do dente sobre um círculo dado	205	
	Espessura cordal e altura correspondente, a partir da cabeça do dente	206	
	Círculos úteis de pé e de cabeça do dente	207	
	Diâmetro útil de pé	209	
	Exemplo de um par com dentes externos	209	
	Exemplo de um par com dentes externos/internos	210	
	Falso engrenamento	211	
	Diâmetro útil de cabeça	214	
	Exemplo de um par com dentes externos.	216	
	Exemplo de um par com dentes externos/internos	217	
	Interferência entre as cabeças das engrenagens externa/interna	218	
	Possibilidade de montagem radial do pinhão na roda interna	221	
9	Grau de recobrimento	225	
	Grau de recobrimento de perfil	225	
	Distância de contato (g_{α})	228	
	Distância de acesso (g,)	231	
	Distância de recesso (g _g)	231	
	Exemplo de um par com dentes externos	231	
	Exemplo de um par com dentes externo/interno	232	
	Diâmetros úteis de cabeça para se alcançar o grau de recobrimento de perfil = 2	234	
	Grau de recobrimento de hélice	234	
	Grau de recobrimento total	236	
10	Modificação dos flancos dos dentes	237	
	Modificação do perfil evolvente	237	
	Deformação na cabeça do dente	237	
	Flexão do dente	240	
	Exemplo para a determinação dos diâmetros limites e do valor do recuo dos alívios	245	
	Modificação da linha de flancos	247	
11	Controle dimensional	253	
	Controle da espessura do dente	254	
	Dimensão W (sobre dentes)	254	
	Cálculo do número k de dentes consecutivos a medir	258	
	Para dentados retos sem deslocamento de perfil $(x = 0)$	258	
	Para dentados retos com $x \ge 0,4$	258	
	Para dentados helicoidais sem deslocamento de perfil $(x = 0)$	258	
	Para dentados helicoidais com deslocamento de perfil	258	
	Dimensão W teórica	259	

Dimensão W em função da espessura circular normal do dente	259
Diâmetro do ponto de contato entre o disco do micrômetro e o flanco de dent	te 259
Largura mínima da roda dentada para a medição Wk	259
Dimensão M (sobre rolos ou esferas)	
Classe de tolerância para as esferas e rolos utilizados na dimensão M	262
Diâmetro das esferas ou rolos (D_{M}) utilizados para a dimensão M_{d}	264
Dimensão sobre esferas ou rolos (M_d) para dentado externo reto	265
Dimensão sobre esferas ou rolos para número par de dentes	265
Dimensão sobre esferas ou rolos para número ímpar de dentes	265
Dimensão entre esferas ou rolos (M _d) para dentado interno reto	266
Dimensão entre esferas ou rolos para número par de dentes	266
Dimensão entre esferas ou rolos para número ímpar de dentes	266
Dimensão sobre esferas (M _d) para dentado externo helicoidal	267
Dimensão sobre esferas ou rolos para número par de dentes	267
Dimensão sobre esferas ou rolos para número ímpar de dentes	267
Dimensão entre esferas (M _d) para dentado interno helicoidal	268
Dimensão entre esferas ou rolos para número par de dentes	269
Dimensão entre esferas ou rolos para número ímpar de dentes	269
Tolerâncias do dentado	270
Desvio de concentricidade	271
Flutuação das espessuras dos dentes	272
Desvio de passo	273
Desvio de passo individual (f_p)	273
Erro de divisão entre dois passos consecutivos (f _n)	
Erro de passo total (F_p)	274
Desvio de passo sobre k passos consecutivos (F_{pk})	
Desvio de passo sobre uma fração (z/k) de volta (F _{pz/k})	
Desvio de passo base normal (f_{pe})	
Desvio de hélice	
Desvio total na linha dos flancos (F_g)	277
Desvio angular na linha dos flancos (f _{HB})	277
Desvio de forma na linha dos flancos (f_{Bf})	278
Abaulamento de largura (C _B)	278
Valores para o fator K'	281
Correção da hélice	282
Desvio de perfil	283
Desvio total do perfil evolvente (F_f)	284
Desvio angular do perfil evolvente $(f_{H\alpha})$	285
Desvio de forma do perfil evolvente (f_f)	
Deslocamento de transmissão	
Deslocamento de transmissão radial	291
Deslocamento de transmissão tangencial	297

12	Análise geométrica	301
	Método das dimensões W para dentado externo reto	301
	Método das dimensões M para dentado externo reto	302
	Método das dimensões N para dentado externo reto	305
	Método das dimensões W para dentado externo helicoidal	311
	Método das dimensões M para dentado externo helicoidal	315
	Método das dimensões N para dentado externo helicoidal	317
	Exemplo para análise geométrica de um dentado externo reto	318
	Exemplo do método das dimensões W	318
	Exemplo do método das dimensões M	318
	Exemplo do método das dimensões N	320
	Exemplo para análise geométrica de um dentado externo helicoidal	322
	Exemplo do método das dimensões W	322
	Exemplo do método das dimensões M	322
	Método das dimensões W para dentado interno reto e helicoidal	324
	Método das dimensões M para dentado interno reto e helicoidal	324
	Exemplo para análise geométrica de uma roda dentada interna reta	327
	Exemplo para análise geométrica de uma roda dentada interna helicoidal	328
13	Desenho do produto.	331
14	Processo de fabricação.	333
	Folha de processo	333
	Folha de operação	334
	Preparação do blank	340
	Locação da peça no espaço	341
	Geração de dentes	345
	Geração de dentes com ferramenta tipo hob	347
	Trabalho com avanço axial	348
	Trabalho com avanço radial	349
	Trabalho com avanço tangencial	351
	Trabalho com avanço diagonal	351
	Sistema de corte	351
	Hob com múltiplas entradas	353
	Avanço axial da ferramenta em função da espessura máxima do cavaco	366
	Número máximo de entradas para o hob $(z_{0 \text{ max}})$	368
	Protuberância na cabeça do hob	369
	Aproveitamento do hob	369
	Montagem do hob na máquina	373
	Dispositivos para cortar dentes com hob	374
	Dispositivo de fixação e de locação com centralização pelo furo da peça	375
	Problemas de qualidade encontrados no processo de corte com hob	378

	Defeitos e prováveis causas	378
	Geração de dentes com ferramenta tipo shaper	386
	Avanço no processo shaping	388
	Avanço radial sem avanço rotativo	388
	Avanço radial com avanço rotativo	389
	Avanço espiral constante	389
	Avanço espiral decrescente	389
	Problemas de qualidade encontrados no processo de corte com shaper	389
	Defeitos e prováveis causas	389
	Acabamento nos dentes	392
	Acabamento nos dentes por rasqueteamento	392
	Princípio dos eixos cruzados	393
	Princípio dos eixos cruzados em relação à pressão	394
	Princípio dos eixos cruzados em relação ao movimento de deslizamento	395
	Procedimentos de trabalho	398
	Procedimento longitudinal	398
	Procedimento diagonal	399
	Procedimento diagonal-transversal	400
	Procedimento transversal	400
	Procedimento mergulho	401
	Rasqueteamento com contato par	401
	Sobremetal para rasquetear	403
	Pré-rasqueteamento	404
	Dispositivos utilizados para rasquetear	406
	Velocidade de corte para rasquetear	410
	Avanços no processo de rasqueteamento	411
	Problemas de qualidade encontrados no processo de rasqueteamento	411
	Defeitos e prováveis causas	412
	Acabamento nos dentes por retificação	424
	Método de retificação por geração contínua	424
	Método de retificação por forma	425
	Método de retificação por geração de setores	425
	Sobremetal para retificação	425
	Pré-retífica	427
	Dispositivos utilizados para retificar dentes.	427
	Resultados práticos	428
	Método por Geração contínua versus Forma	428
15	Materiais e Tratamento térmico	433
	Seleção dos materiais	433
	Métodos para a preparação do bruto.	435
	Fundição.	435

Para encontrar A foi aplicado o método numérico de Newton e Raphson.

$$A = 0,652824 \text{ rad} = 37,40406^{\circ}$$

$$B = \frac{\frac{21}{\cos 25^{\circ}} \left(\frac{\cos 21,880233^{\circ}}{\cos 37,40406^{\circ}} - 1 \right) - 2 \times 0,5}{2} = 1,448384 \quad \text{ref } (3.152)$$

$$d = \frac{m_n \cdot z}{\cos \beta} = \frac{5 \times 21}{\cos 25^\circ} = 115,854682$$
 ref (7.30)

$$k_{aPer} = \frac{100\left(\frac{130,855 - 115,854682}{2 \times 5} - 0,5\right)}{1,448384} = 69,04\%$$
 ref (3.153)

OS CINCO ELEMENTOS DO DENTE

Mostrei, até aqui, os cinco elementos que formam o dente de uma engrenagem. As Figuras 3.50 e 3.51 ilustram mais tecnicamente as curvas que compõem cada um desses elementos para dentado externo e interno, respectivamente.

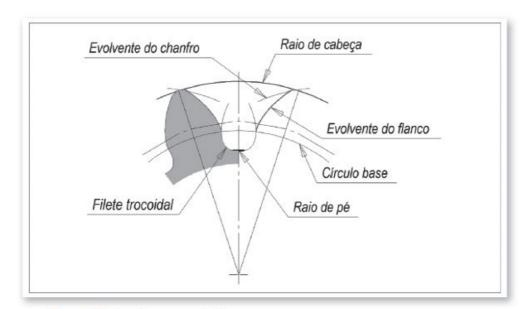


Figura 3.50 - Involutometria do dente externo.

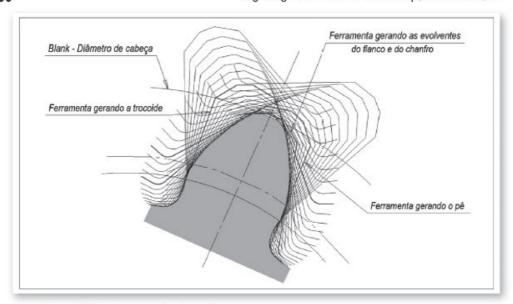


Figura 3.52 - Geração do dentado externo.

Figura 3.53 - O hob - caracol.

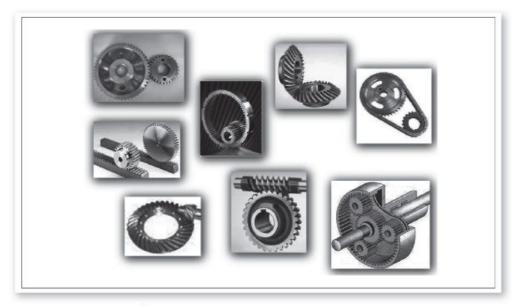


Figura 4.1 – Tipos de engrenamento.

ENGRENAGENS CONCORRENTES

São engrenagens cujos eixos concorrem em um ponto, portanto, são rodas cônicas. Possuem dentes retos ou curvos (espirais). As engrenagens com dentes retos operam, normalmente, em baixas rotações.

ENGRENAGENS HIPERBOLOIDES

São engrenagens que possuem eixos reversos em planos distintos. Por essa razão, os eixos não se cruzam. Tecnologia dos grandes fabricantes de máquinas como, por exemplo, a Gleason (Americana), cujo nome é Hipoidal, e a Klingelnberg (Alemã), cujo nome é Paloidal.

ENGRENAGENS PARA CORRENTE E/OU CORREIA DENTADA

Essas engrenagens têm eixos distantes um do outro e transmitem potência por meio de uma corrente ou correia dentada. Uma grande vantagem é a leveza do conjunto. Grau de recobrimento 235

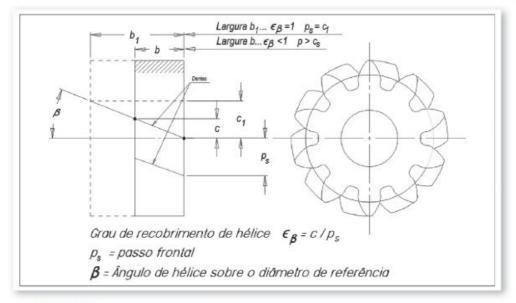


Figura 9.8 - Grau de recobrimento de hélice.

Figura 9.9 - Roda com dentes helicoidais.

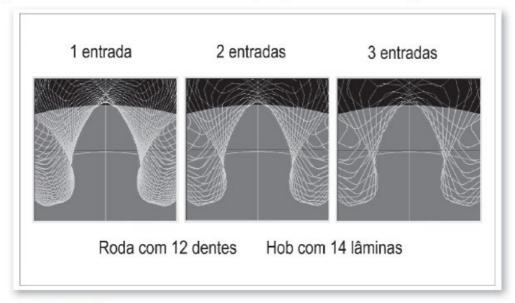


Figura 14.25 – Resolução do flanco do dente em função do número de entradas do hob.

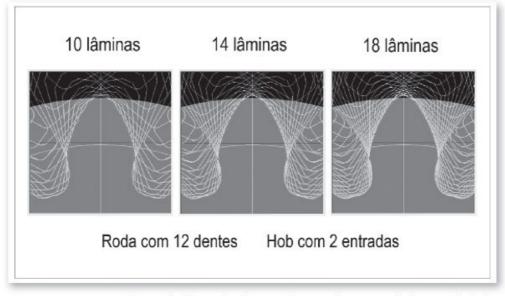


Figura 14.26 - Resolução do flanco do dente em função do número de lâminas do hob.

Processo de fabricação 393

dois flancos, simultaneamente. O sentido de rotação do par é revertido a cada passe. A operação é preparada para realizar vários passes, cujo número depende da qualidade que se pretende e do sobremetal. Os eixos do cortador e da peça são reversos com inclinação que varia entre 5° e 15° normalmente. Veja a Figura 14.60.

O processo de acabamento por rasqueteamento foi adotado pela indústria, principalmente a automotiva, graças ao custo da operação, que é reduzido quando comparado a outros e à versatilidade que o sistema oferece. Pode-se alterar o perfil e a linha de flancos (direção da hélice) para compensar eventuais problemas de forma e posição, além de poder-se aplicar esse processo a qualquer roda dentada cilíndrica externa.

A capacidade de trabalho das máquinas rasqueteadoras normais vai de 20 a 550 mm no diâmetro primitivo das rodas. Os fabricantes podem construir máquinas especiais com capacidade de trabalho muito maior. Há também máquinas para rasquetear dentados internos.

Princípio dos eixos cruzados

Para remover material ao rasquetear uma peça qualquer, é fundamental que a ferramenta exerça *pressão* e *movimento* de deslizamento sobre a peça.

Figura 14.60 - Processo de rasqueteamento (shaving).

Acabamento nos dentes por retificação

O processo por retificação pode ser efetuado por três diferentes métodos, que são descritos a seguir.

Método de retificação por geração contínua

Nesse método, a retificação se dá por geração, em que o rebolo se assemelha a um hob, porém, sem os sulcos que caracterizam suas lâminas cortantes. Podemos chamá-lo de rebolo caracol ou grinding worm. Na Figura 14.97, a foto da direita mostra uma retificadora Liebherr LCS 700 com o rebolo citado.

Ele gira continuamente (indexação contínua) conjugado à peça na máquina retificadora. O rebolo avança sobre a peça em um movimento de ida e volta na direção paralela ao eixo da peça, retificando os flancos dos dentes, de maneira que a posição (passo) e a forma dos dentes retificados fiquem adequadas às exigências de qualidade especificadas. Essa é a maneira mais rápida e rígida para a retificação de dentes, portanto, é o método ideal para a produção de grandes lotes. Em contrapartida, o custo do rebolo por peça é alto, se comparado com o do método de retificação por Forma.

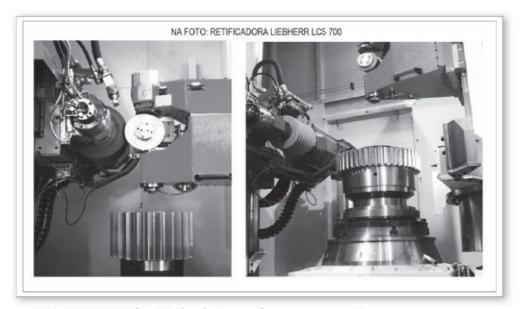


Figura 14.97 – Retificação dos dentes por forma e por geração.

Este livro está à venda nas seguintes livrarias e sites especializados:

Blucher

Blucher

EXCELÊNCIA E
INOVAÇÃO EM
ENGENHARIA
MECÂNICA